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Abstract. For the Lie superalgebra(n + 1) a description is given in terms of creation and
annihilation operators, in such a way that the defining relationg(ef+ 1) are determined by
quadratic and triple supercommutation relations of these operators. Fock space representations
V, of g(n + 1) are defined by means of these creation and annihilation operators. These new
representations are introduced as quotient modules of some induced moduietofl). The
representation¥), are not graded, but they possess a number of properties that are of importance
for physical applications. Fgr a positive integer, these representatidpsare finite dimensional,

with a unigue highest weight (of multiplicity one). The Hermitian form that is consistent with
the natural adjoint operation an(n + 1) is shown to be positive definite o,. Forg¢(2) these
representations are ‘dispin’. For the general casg(@f+ 1), many structural properties , are
derived.

1. Introduction

Lie superalgebras and their irreducible representations (simple modules) have been the subject
of much attention in both the mathematical [1-3] and the physics [4—6] literature. However,
even for the simplest family of basic classical Lie superalgebras, natitelyn) or gl (m/n),

the understanding of all finite-dimensional simple modules has been a very difficult problem.
The main reason for this difficulty has been the existence of so-cafigiical modules [2].
Although partial progress was made in determining a character formula for atypical modules
[7-9], the problem of determining the charactergt@ /n) modules was solved only recently
[10,11] (see also [12] for a simpler algorithm).

The general linear Lie algebrgl(n) has two super-analogues. The first is the Lie
superalgebrgl(n/1), for which the representations (even the atypical ones) are now well
known; for example, a Gel'fand—Zetlin basis has been introduced and its transformations have
been determined [13, 14], and representations/0f/1) have been studied [15,16]. The
second super-analogue is the strange Lie superalggbya This Lie superalgebra has also
received attention recently. In particular, the character of finite-dimensional irreducible graded
representations af(n) have been determined [17-19], both in the typical and atypical case.
In a different context, oscillator realizations have been given [20].

The finite-dimensional irreducible graded representatiopgofhave the strange property
that the multiplicity of the highest (or lowest) weight is in general greater than 1 [18]. From
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the physical point of view, where one wishes to interpret the representation space as a Hilbert
space with a unique vacuum, this situation is not very favourable.

In the present paper, our purpose is to study a new class of irreducible finite-dimensional
representations of the Lie superalgebra), which have certain properties that are required
in a physical context. In particular, the highest weight has multiplicity 1 (so there is a unique
highest-weight vector, up to a factor), and the representation space can be naturally equipped
with a symmetric and non-degenerate positive-definite Hermitian form (inner product).
Moreover, creation and annihilation generators (or operators) are introduce@:fosuch
that the representation space is a Fock space. The only property that has to be abandoned is
the grading of the representation space (but from the physical point of view, this grading is no
requirement).

The structure of the paper is as follows. In section 2 the main definitions are given
concerning the Lie superalgehyé: +1). In sectio 3 a newbasis forg (n +1) is given in terms
of so-called creation and annihilation operators. The new class of representatignstaf)
is introduced in section 4. These representations are defined by means of an induced module
V,; the actual irreducible representati&p which is of interest is then a quotient module of
V,. To gain some idea about the structureVpf we first consider the low-rank case @)
in section 5. Here, the representation has a ‘dispin’ structure. Section 6 returns to the general
casey (n+1), and includes several (technical) properties concerning the structugeedving
the way to determining the structure of the simple modlgsThis is performed in section 7,
where in particular we give the dimension and charactér,ofand show that the Hermitian
form is positive definite.

2. The Lie superalgebrag(n + 1)

The Lie superalgebra(n + 1) can be determined through its defining representation, i.e.

q(n+1):{(2 i)‘A,Begl(n+l)} 8}

where the matrices witlB = O are even, or elements gfn + 1), and those witth = 0
odd, or elements of(n + 1);. The subalgebrag(n + 1) consists of those elements with
tr(B) = 0. The Lie superalgebragn + 1) andsq (n + 1) still contain a one-dimensional centre
CI, wherel is the identity matrix. Hence one defines the quotient Lie superalgelgria + 1)
assq(n+1)/ClI. The notationy(n + 1), sq(n + 1) andpsq(n +1) is due to Penkov [17]; in the
notation of Kac [1, 2] we hav@ (n) = sq(n+1) andQ(n) = psq(n+1). RecallthatQ(n) is a
simple Lie superalgebra far> 2, and that it is one of the series of classical (but ‘strange’) Lie
superalgebras in the classification of Kac [1]. For the development of representation theory,
we shall be working mainly witly (n + 1).

Thusg(n + 1) can be defined as the Lie superalgebra witi+ 1)2 even basis elements
el (i,j=0,1,...,n) and(n + 1)* odd basis elements; (i, j =0, 1,...,n), satisfying the
bracket relation

[ef;. €] = 8juef™ — (=17 el )

wheres, 0 € Z, = {0,1}, andi, j, k,I € {0,1,...,n}. In this paper, we shall use,|]
for the Lie superalgebra bracket, and write explicitly} [respectively{, }) if this denotes a
commutator (respectively anticommutator). Bt denote thén +1) x (n+1) matrix with 1 in
position(Z, j) and 0 elsewhere (indices running from 0«0 then the defining representation
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of g(n + 1) is given by the map

0 E; O i 0 Ej
eij—>< 0 E, e — E; 0 3)

onto matrices of order(@ + 1).

Following the definition of Cartan subalgebra as a maximal nilpotent subalgebra coinciding
with its own normalizer, a Cartan subalgelifaof G = g(n + 1) is given byH = Hy & Hj,
whereHy = sparfe | i =0,1,...,n} andH; = sparfel | i =0,1,...,n}[17,21]. This
subalgebra is not Abelian, and since the elementd0ére odd, the root generatar§ are
not eigenvectors off;. Therefore, to give a root decomposition @fit is more convenient
[21] to work with the Abelian subalgebrflz. The dual spacéf; has the standard basis

{€o, €1, ..., €}, iIn terms of which the roots aff can be described. The elemeags(i #7)
are even root vectors corresponding to the ket ¢;; the elements}j (i # j) are odd root

vectors also corresponding to the rept-¢;; the elements’. from H; can then be interpreted
as odd root vectors corresponding to the root 0. Note that everyeroete; (i # j) has
multiplicity two (counting once as an even and once as an odd root). Let, as Asbalthe
set of all roots A (respectivelyAl) be the set of even (respectively odd) roots:

AV ={e —¢;10<i#j<n} Al = A%U (o). %)
The positive roots are
Av=A0=Al={c—¢ |0<i<j<n) (5)

With this choice of positive roots the weights= }""_,A;¢; € Hy are partially ordered
by < piff w — A = kya Wherea € A, andk, are non-negative integers. The adjoint
representation hag — ¢, as highest weight, with multiplicity two. The defining representation
has highest weighty, also with multiplicity two.

Let V be a linear space ovét, and denote by!(V) the space of endomorphisms bf
A representatiom is a linear mapping frond to g/ (V) such that

p(lx. yD) = p®)p(») — (1D p(Mp(x)  VxeG, yeGy 0.0€y (6)

ThenV is aG-module withxv = p(x)v for x € G andv € V. If, moreover,V is aZ,-graded
linear space, i.e/ = V5@ Vi, thengl (V) is also naturally grade@/ (V) = gl(V)s® gl(V)1,
and thenp is a graded representation (aifda gradedG-module) if p(x) € gI(V), for
x € G,. For Lie superalgebras, one usually considers only the graded modules when studying
representationtheory[1, 3]. Here, we shall seegdliat 1) has a class of interesting non-graded
modules.

Graded modules of (n + 1) were considered by Penkov and Serganova [17-19]. In
particular, they showed that the finite-dimensional irreducible representafiafig (n + 1)
are characterized by a highest weight >, A;¢;, such thak; — 4,+1 is a non-negative integer
andx; = A;+1 implies); = A;+1 = 0. The dimension of the highest-weight spageg(A # 0)
is given by [18, p 150]

dim(v;) = 2H#-D/2 @

where # is the number of non-zero coordinatesand [] is the integer part of. For example,
for the defining representations with= (1,0, ..., 0) and the adjoint representation with
Ar=(1,0,...,0,-1), the highest-weight space has dimension 2.
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From the physical point of view, it is unusual to have a highest (or lowest) weight with
multiplicity greater than one, since this is normally associated with a ‘unique vacuum’.

Here we shall show that(n + 1) has a class of interesting non-graded representations,
with a unique highest-weight vector (i.e. highest-weight multiplicity one), and which are also
finite dimensional. Moreover, these representations can be interpreted as Hermitian Fock
representations generated/bgven and: odd creation operators.

3. Creation and annihilation operators for g(n + 1)
Let af (o) be the following elements af(n + 1):

ai(o) = ¢y a; (o) = e, o€l i€{l....n. (8)
It is easy to verify that these operators satisfy the following relations:
[a; (0).a; )] = 4] (0),a;(®)] =0 )
[ (). a7 O], @ (@)] = 8xa (6 +6 +w) + (=177 547 (6 +6 + w) (10)
L4 (©).a; O] a; (@)] = —(=D)"8;ja; (6 +60 +w) — (—D)***7 a7 (0 +6 +w) (11)

whereo, 0, w € Z, i, j, k € {1, ..., n}. Itis convenient to introduce the following notational
difference between the even and odd operators:

bE=ar®  fF=at@d. (12)

The operatord;, f;* (respectivelyb;, f;”) shall be referred to as creation (respectively
annihilation) operators for the Lie superalgelgi@ + 1) (even though they generate only
the subalgebrag (n + 1)).

A definition of creation and annihilation operators (or generators) of a simple Lie
(super)algebra and of the related Fock spaces was given in [22, section 2]. The motivation
for introducing such operators stems from the observation that the creation and annihilation
operators (CAQOs) of certain algebras have a direct physical significance. We have in mind the
para-Fermi and the para-Bose operators, which generalize the statistics of spinor and tensor
fields in quantum field theory [23]. Any pairs of parafermions are CAOs of the orthogonal
Lie algebraso(2n + 1) = B, [24,25]. The parabosons do not generate a Lie algebra, they
generate a Lie superalgebra [26]. Amyairs of them are CAOs of the orthosymplectic Lie
superalgebrasp(1, 2n) = B(0, n) [27].

In [28] the question was raised as to whether each simple Lie (super)algebra can be
generated by creation and annihilation generators. The answer is positive for all algebras from
the classed, B, C andD of simple Lie algebras [29] and for some Lie superalgebras. So far,
however, only the CAOs and the Fock representations(@f+ 1) (A-statistics) [29, 30] and
of Lie superalgebrad (1/n) (A-superstatistics) [22] were studied in somewhat greater detail.
The present paper is another contribution along this line for the Lie superalgeb#al).

Returning to the CAOs (8) we note that the operadﬁrsatisfy the relations ol -statistics
[30], whereas the operatoy’;‘t satisfy the relations ofi-superstatistics [22]. Here, we shall
refer to the combined relations (9)—(11) @sstatistics. Clearly, the linear envelope of

(@ (). [af @), a/O)E.n e {+.~} 0.0 € Zo, i, j € {1.....n}}  (13)

is equal to the Lie superalgelva(n + 1).
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4. Fock space forg(n + 1)

We shall define a Fock space f6r = ¢(n + 1) using an induced module. First of all, from
the commutation relations @f(n + 1) it is straightforward to see that(1) = spariego, e},o}
andg(n) = sparey; | i,j = 1,2,...,n; o = 0,1} are subalgebras ef(n + 1) with
[¢(1), g(n)] = 0. So consider the subalgebra

G=q)@qmn). (14)
Let

P =spadby,....b,, fi..... f,'}

N =sparby,....b,, fi ..., £}

these are two Abelian subalgebras®f ThenG = G + P + N, where the sum is direct as
linear spaces. Sinced, P] = P, G + P is also a subalgebra @f.
The Lie superalgebra(1) has basis element§, andel, with supercommutation relations

(15)

[980’ ego] =0 [ego’ eéo] =0 {eéo’ eéo} = 2e80. (16)
Clearly, this Lie superalgebra has one-dimensional irreducible mo@uigsharacterized by
a numberp, with action

egovo = puo egovo = /P vo. a7

In principle p can be any complex number, but later we shall be interested only in the case
wherep is a positive real number. The&1)-moduleCvy can be extended to@ = q(Ddg(n)-
module by lettingcvg = O forallx € ¢(n). Requiring thak vy, = O for everyx € P itbecomes
a(G + P)-module.

We now define the following induce@-module:

V, =1Indg, ,Cvo = U(G) ®g.p Cro. (18)
By the Poincae—Birkhoff-Witt theorem for Lie superalgebras, we have

V, = U(N) ® Cup. (19)
Thus a basis 0f7p is given by the elements
P kasa ke, Lo ok B = (BD (D ()2 (f) -+ b)) (£ vo

l; €{0,1} k=0,1,2,.... (20)

What are the identities that hold in this representation spaeeFirst of all, note thav, has a
unigue highest weight equal p&(, corresponding to the unique (up to a factor) highest-weight
vectorvg. So the highest weight has multiplicity one. On the other hand, equation (17) shows
thatvg is neither an even nor an odd vector, i.e. menoduIeVp is not graded. Note that the
weight of (20) is given by

peo+ Y (ki +1) (€ — €o). (21)
i=1

Secondly, the vectary can genuinely be called a ‘vacuum vector’ since it satisfies

bl-_vozfi_vozo (i=1,2,...,n). (22)
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Furthermore, the following relations are valid:

bl-_b}—vo = Sijp Vo fl._f;vo = Sijp Vo

23
ffb}'vo = dij/P Vo bff;l)o = 8ij/ P vo. @3

Note that relations (22) and (23) are also sufficient to define the represenf’gtion
In order to callv,, a Fock space, one further condition should be satisfied, namely it should
be a Hilbert space consistent with the adjoint operation [22, 30]

9" = b7 fHT = £ (24)
Thus we define a Hermitian form dr}, by
(vglvg) = 1 (bi+v|w) = (v]b; w) (fi+v|w) = (v|fi w) v, W € \_/p. (25)

In generaI,V,, is not a Hilbert space. However, we shall see thatiff a positive integer\?p has
aquotient space whichis a Hilbert space. Indeeglisfa positive integer, the spaﬁ’g is shown
to have a maximal submodulé,,. Then the quotient module, = V,,/M, is an irreducible
G-module. The Hermitian form is zero dd, and onV, it induces a positive-definite metric.
ThusV, can genuinely be called a Fock space representatigivof 1).

The Lie superalgebra(n + 1) contains a one-dimensional centre,

1=y, (26)
i=0

Sincelvy = pvg, andV,, (or V,) is generated byy, it follows that/v = pv for everyvin V,
(or vp).

As we shall see, the structure &f or V,, is far from trivial. Before turning to the general
case, let us first consider the low-rank case of the Lie superalgebsa (2).

5. Fock space forg(2)

Sincen = 1 there is only one index for the creation and annihilation operators, so we shall
simply denoteby, i~ by b*, f*.
The representation spa®g is spanned by the following vectors (notation of (20)):
u = |p;k,0) = (BH*v k=0,1,...
k= 1p ) ()O+k1+ 27)
we = |pik—1,1) = ®H g k=12 ....

The following actions of the annihilation operators gnandw, can be computed using the
triple relations (9) and (10), (11):

b™v =k(p —k+ D (28)
o =kypv-1—k(k — Dwy_1 (29)
b wi = /pu—1t (k—D(p — Hwe—1 (30)
fTwe = puer — (k — 1)/p wi—1. (31)

It is not difficult to verify the following, using the earlier defined metric 6);1 and (28):

(elv) = klp(p =D+ (p —k +1). (32)
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For fixed p, this expression can take positive and negative values, depending upon the value
of k. Hence,V, itself is not a Hilbert space representation. Next, let us investigate whether

V, isirreducible. Using the relations (25), (28)—(31), and induction, one can show that

(vklvg) = duk!p(p =1 ---(p—k+1) (33)
(welwy) =0tk —Dip(p—1D---(p—k+1) (34)
(velwy) = Suklp(p =D --- (p —k+1)//p. (35)

Now (33) and (34) imply that
O vy =klp(p—1---(p—k+Dvg
G we=K(k=Dlp(p—1D - (p—k+ D).

Thus if p is not a positive integer these coefficients are not zero, implying that the vegtors
andw, cannot belong to a submodule 6; (apart from the trivial submodulép). In other
words, if p is not a positive integeﬂ?p is irreducible.

Let us now consider the interesting case wheris a positive integer. Theiﬁ’p has a
maximal submoduleé/,. SinceV, is a module generated by a highest-weight vector, the
submodule is generated by primitive weight vectors, so let us determine when a weight vector
v + Bwy is primitive. The condition®~ (v, + Bwy) = 0 and f~ (v, + Bwy) = 0 lead to
one solution only, namely = p andg = —./p. Thusv, — /pw, is a primitive vector
generating the submodul,. The quotient modulé/, = V,/M, is therefore a finite-
dimensional module. A set of basis vectorsigf together with the corresponding weight, is
given by

(36)

Vo P€o
V1, W1 (p—Degter
V2, W2 (p— 2)e0 +2¢;
(37)
Vp—1, Wp—1 e+ (p—Der
vyt /pwp PE€1.

The top and bottom weight appear with multiplicity one, the other weights have
multiplicity two. From the weight structure one can determine the decomposition of this
finite-dimensional (2) module with respect to the subalgelig2) c ¢(2):

V, = (p.0)@d(p—-11) (p>1. (38)

So V,, splits into two irreducibleg/(2) modules, both of which have been labelled by their
highest weight (in théeo, €1)-basis). Sofop > 1thesey(2) representations could be referred
to as ‘dispin’ representations, similar to the known dispin representationg ¢f, 2) [31, 32].
For p = 1, the decomposition is simply, — (p, 0). The dimension follows easily:

dimV, = 2p. (39)

It is possible to give an orthonormal basis oy, in terms of the above basis vectags
wy. Since

(v £ Vhkwlve £ Vikwg) = 21 £ Vk/p)k! pl/(p — k)! (40)
(v + Vhkw|ve — Vkwg) =0 (41)
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one can define

(=R _
“”“(M) rvEko)  k=L..p) (@42

o 1/2
W= (Gt vam) GV 60ob @

These vectors are orthonormal:
(Drldn) = (Yiln) = du (l¥) = 0. (44)

The action of the creation and annihilation operators on this basis can be computed. We have:

Fo =3[ - W+ VD] b 1 [(VF - VO (5 - VETD] e

(45)
e = % [(ﬁ+ \/Z)(\/ﬁ+ m)]l/Z oot — % [(ﬁ+ \/E)(ﬁ B m)]l/z -
(46)
bor = JVEF1+VR) [(V7 VR (VB +VEF D] dun
+3(VEF T VE) [ (VP ~ V) (VP - */kT)] Vit (47)
= HEFT VR [(Vp VBV VEFD] e
H(VEF LV [(Vp VR (VB - VEF D] v )

The action of the annihilation operators follows immediately flom= (b*)', f~ = (fH.
For example,

7o =3[P - VEE )W VR)] pa (B VEE DV v
(49)

6. Structure of the moduleV,,

In this section we return to the general cage + 1). By calculating the action of creation
and annihilation operators on basis vectors of the induced maguyline way is prepared to
determine the structure of the irreducible quotient modglef V.

Recall that a basis fd?p is given by the vectors

|ps ke, 1) = |ps ke, I, ko, Lo, o ook L) = (B (D B3 2 ()2 - (b)Y (£ vo
I, €{0,1} k=0,1,2,.... (50)

Since all creation operatob$ and f;* supercommute, a different order of the creation operators
in (50) can produce only a sign change.
In the standard basis, the weight of the vedark, 1) is given by

weight(|p; k., 1)) = peo+ Y _ (ki +1;)(ei — €o) = (p =D i+l ko, +zn>.
i=1 i=1
(51)
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Thus every weight of7,, is of the form
)Lm=<p—2m,~,m1,...,mn> m; =012 ... (52)
i=1

conversely, every weight of the form (52) is a weightﬁ;f Since thd; in (50) are either 0 or
1, it follows that the multiplicity of the weight,, in V, is given by

n
mult(,p <p - Zmi, m, ..., mn) — Qv (my)t+y (my) (53)
i=1

wherey (m;) = 0if m; = 0andy(m;) = 1if m; # 0.

The action of the creation operators on the basl?épdf; very simple. Itwill be convenient
to denote the basis vectors in the right-hand side of such actions only by means of the labels
that are effectively changed by the action. So, instead of writing

bilpi k) = pske, by, .k + L1, ks L)
fipik ) =8, 0(=D""" prka I,k L+ Lk L),
we abbreviate this to
bilpik.l) = |k; +1) (54)
fipik.b) = 8, o(=D)" 1 + 1), (55)

The action of the annihilation operators is more complicated, and here the notational convention
just introduced will be very useful.

Proposition 1. The action of the annihilation operators in the modiigis given by

filpi k. 1) = (—1)[1+"'+l-"’1l_7 (p +1+k; — Z(ki +li)>|lj -1

i=1

H=D ik Pl — 1) — (=D ok (k; — Dk — 2,1 + 1)

= > (=) okikglk; — 1k — 1,4+ 1)
2

+Y (DI kg — 1k + 10— 1) (56)
i=1
i#]

(=Dl ke, 1) = (1)l ek (p 11—y (ki + 1,-)> Il; —1)
i=1

n
Pl = 1)+ (=D 8, okil il — 1ok — 1.4 + 1)
%
= D Ll — 1k + 1 = 1) (57)
i=1

i#]
wheref;; = +1ifi < jandg;; = —1ifi > j.
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Proof. We shall sketch the proof for the action gf ; that forb is similar. The proof uses
induction orv. ' '
As a first step, the action of," will be determined. Denotg; = (b))% (f;")%. Then,

frlpi kD) = fivye - yavo=Lf7 vily2 - yavo+ (=D y1 f1 ¥2 - yuvo. (58)

Since the weight off; v - - - yavo, Whichis(p + 1 — Y"1 (ki + 1), =1, kp + 12, ... ky +1,),
is not of the form (52), tr_1e vector cannot belongﬁ_tg so_the second term in (58) has to be
zero. Using [f;, b1l = edo — el and [, f1 = €3y + €3, one finds

k1—1

[fi oyl = Y07 (e — el) DL + 10 Qo+ €y).  (59)
r=1

From the weight ofy; andvg one obtains
(680 + e?l)yZ cYuVo = (P - k2 - 12 - kn - ln)yZ © Ynlo. (60)

Next we need to determine the actioneég ande}l on vectors of the forny; > - - - y,vo, where
¥, = (bHh(fH with k= kg — r — 1

egoyiy2 - yavo = [eo Y12+ -+ yalvo + (=D yly, oy, /Do
- n _
= [ego yily2- - yuvo+ Y _ ¥y -+ vicalego yilisn- - yuvo
i=2

+ (=D P Yy yavo.
Every term in this expression can be determined explicitly using

Lo i1 = =810k (B)! 11 + 101" (61)
which follows from the supercommutator q}‘o with b and f;*. Similarly, for the action of
e}, one finds

ey1y2- - yavo = Lety, yily2- - yavo (62)

since [l,, y;] = 0fori > 1 andel v = 0. Using the supercommutator &, with b} and
f1, we find

[ety. yi1 = 81,0k (051 £F + 12 (b)) (63)

Now collecting all contributions yields the action 8f on|p; k, ), as given in the proposition.
In the second step, we use induction in the following way. First, observe thatfa?,

fr vz yavo=Lfy yily2- - yuvo+ (=D y1f5 y2- - Yuvo. (64)

However, the actiorf; y» - - - y,vo is formally the same as the (known) actigfiy1y- - - - y,vo,
by relabelling of indices. More generally, fgr> 2,

fiyiyz - yavo = Lf; . yilya- - yuvo + (=D y1f; y2- - yavo. (65)

Once again,fj‘yz -+ y,vg can formally be reduced 6, 1y1- - Yu—1v0, ON which one uses
the induction hypothesis. So what remains to be determined is the first term in (65). Since
[, bi] commutes withb] (see (10)), one finds

Lf7, GD D" = D)) DS bl + LG f7, fi')- (66)
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To calculate f;, bily2- - - yavo, One uses again the triple relations (10) and (11):

[f,'iv bI]yZ ceYulo = (—1)]2+m+l”1)’2 t yj*ll[[ f‘is bI]v yj]lyj+1 ©* Ynlo. (67)
Furthermore,
[Lf7. b1l yil = —k; f7 DYDY — 1)) by (68)

where again the triple relations have been used. Inasimilar way, the £fiorf;"} vz - - - yavo
is determined. Together they yield the firstterm in the right-hand side of (65). Then, combining
the coefficients of all identical vectors in the right-hand side of (65) proves the proposition.

Now we wish to determine the vectors I, that are annihilated by all annihilation
operators, i.e. by

P =sparby,....b,, f1,.... [, } (69)

For this purpose, and inspired by the right-hand sides in (57) and (56), we introduce the
following weight vectors (still using the notational convention introduced in (54) and (55)):

X(pik. by = (=) /plpi k. 1) = Y (=D Mk + 1,1 — 1)
i=1

=Y (=S okilki — 1,0+ 1). (70)
i=1

Then we have

Proposition 2. For the weight vectors$p; k, 1) and X (p; k, 1) the following equalities hold
(again we use the convention that in the right-hand side only the labedsd /; that are
effectively changed are withheld):

by |p; k1) =k, (P +1- i(ki +zz~>)lkj — 1)+ (D)L X (py 1 - 1) (71)
i=1
£ 1Pk, 1) = (=Dl <p +1— ij(ki + li)>|l,- — 1) +k;X(p;kj — 1) (72)
i=1
biX(pi k. 1) = X(pikj + 1) + (=15, oll; +1) (73)
X (pik.l) = =8, (=D X (pi 1 + 1) + |k; + 1) (74)
by X (p; k, 1) =k,»<p—ij(ki +L-))X<p;k, -1 (75)
[T X (pik, 1) = (=1, (p - ilj(ki + m)X(p; lj— 1. (76)

Proof. The proof is by direct computation, using proposition 1. The first two relations are just
a reformulation of the equalities in proposition 1. The next two relations follow immediately
from the definition ofX (p; k, 1) and the actions (54) and (55). The last two relations are the
most difficult to verify. They follow from the action of the annihilation operators on each part
of X (p; k, 1), using proposition 1, and then collecting the terms according to equal weight
vectors| p; k, 1). This computation is long but straightforward, and will not be given in detail
here. |
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Note that all vector( (p; k, 1) with >, (k; +1;) = p are annihilated by.

In order to understand the linear (in)dependence of the newly introduced weight vectors
X (p; k, 1), itis convenient to prove first an interesting lemma about the determinant and rank
of a matrix. Letr be a positive integer, and consider tfie<2" matrix A, where the rows and
columns ofA are labelled by the binary sequenées (11, ..., [,) (I; € {0, 1}) of lengthr in
reverse binary order. The elemeatg of A = A(s; 11, ..., t,) are as follows:

if 1 =10thena;; =s

if I andl’ differ in only positioni then
if ; =0 thena;; = —(=1)* g, (77)
if ; = 1 thena;; = (=1)"* "y,

otherwiseq; = 0.

Herein,s andr, ..., t. are arbitrary real numbers or variables.

It is constructive to consider an example. Foe 2, the binary sequences labelling the
rows and columns of are(0, 0), (1, 0), (0, 1), (1, 1) (in this order); forr = 3 the sequences
are(0,0,0),(1,0,0),(0,1,0),(1,1,0),(0,0,1),(1,0,1), (0,1, 1), (1,1, 1). The matrices
take the following form:

A(s; 1, 10) = (78)

-1 O - 0 -1 O 0
-1 0 S t1 0 0 - O
A(s; t, b, 13) = 0 b 1o 0 0 0 (79)
-1 0 0 0 s t1 to 0
0O -1 0 1 s 0
0 0o -1 1 s -1
0 O 0O -1 0 1 -1
Lemma 3. The matrixA(s; 1, ..., t,) (r > 1) defined above satisfies:

(a) the determinant is given by

r -1
detA(s; 1, ..., 1) = (52 - Zt,) (80)

i=1

(b) if the elementst; are positive real numbers such thaf_,# = s? then
rank(A(s; t1, ..., 1)) = 2L
(c) A(s;ty, ... ) - A(=s;t1, ..., 1) = (Zt,» —sz)l (81)
i=1

wherel is the identity matrix of orde?".
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Proof. The proof of (a) is by induction on. Clearly, it holds forr = 2. By definition, the

matrix A(s; t4, . . ., t,) can be written in block form as
A(s;tq, ..., b _ —t.1
Atsin..y= [ 160 & (82)
—1 —A(—s;t1,...,t_1)
wherel is the identity matrix of order’2?. So by induction we have det(s; 11, ..., t,_1)) =

(2= Y'211)% " and det—A(—s; 11, ..., t_1)) = ((—s)% — Y_1)? ", Then it follows
from (82) that

det(A(s; t1, ..., -1, 0)) = det(A(s; 11, ..., t,_1)) det(—A(=s; 11, ..., t—1))

r—1 -1

= (s2 - Zt,) . (83)
i=1

On the other hand, exchangingand?; in A(s; t1, ..., ) corresponds to a permutation of

the rows and corresponding columnsAxf; 1, .. ., #,); a closer examination shows that the

signature of such a permutation is positive. TH(s; 11, .. ., #,) is invariant for transpositions

of the forms; <> ¢;. Therefore, defA(s; 11, ..., t.) is @ symmetric polynomial in the elements

t;. Since the power sum symmetric functions form a basis of the ring of symmetric polynomials

[33, p 24], it follows that

N

detA(s; t1, oo b1, ) = D Y Cel)pein, - b1, 1) (84)

k=0 ktk

whereN = 271,  is summed over all partitions &f andp, is the multiplicative power sum
function [33, p 24]. Combining (84) with (83) gives

N

detA(sifr, ... t1.0) =Y Y cel)pelts. ... tro1) = (* = pa(tr. ... t_))"  (85)
k=0 xtk
sincepi(ty, ..., 1) = Z;’;ll t;. Thanks to the linear independence of fhe the expansion

of the factor to thevth power in (85) fixes all the coefficients (s). Substituting these back
into (84), it follows that we must have

N
detA(sitrooos ot ) = D D Ce()Peltn, o tro1 1) = (57 = palia ooyt )Y
k=0 «tk

(86)

which proves (a).

To prove (b), writeA(s; t1, ..., t) asA(s; t1,...,t) = sI — B, wherel is the identity
matrix of order 2. Note thatB is a matrix with elements similar to those afbut with zeros
on the diagonal. Introducing a diagonal matixof order Z by

dl,l = ([iltéz cee [1,_)1/2 (87)

r

itis easy to see thdd B Dt is a real and symmetric matrix. For such matrices, all eigenvalues
are real, with geometric multiplicity equal to the algebraic multiplicity. Thus this also holds
for the eigenvalues aB. The characteristic equation 8fis

r

or-1
det(B — Al) = det(A(A: 11, ..., 1)) = (AZ - Z“’) =—w? o+ (88)

i=1
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wherep = +,/3"7_, #;. So for the eigenvalug the geometric multiplicity is 2°X. Since the

geometric multiplicity is also equal to"2- rank(B — 1), it follows that rankB — 1) =
2 —2"1=2"1 orrankA(u; t1 ..., 1)) = 271, implying the statement (b).

To prove (c), consider the elemeat, in the multiplication of A(s; 71, ..., ) with
A(—s; 1, ...,t). From the definition (77) it follows immediately that, = O if I # U,
and thate;; = Y, t; — 52 O

This lemma can now be used to determine the linear (in)dependence of the weight vectors
X (p; k,1). Consider a weight,, = (p — > imi,mi, ..., my,), with all m; > 0. Then the
multiplicity of 4,, in V,,, or equivalently the dimension of the weight spa¢ga,,), is given
by
dy = dimV,(x,,) = 2V m*rm) — or (89)

wherer is the number of non-zerg;s. Abasis oﬂ7p (An) is given by the set of vectorg; k, 1)
with everyk; +1; = m; (or k +1 = m). One can consider another setigfvectorsX (p; k, 1)
with k+1 = m. The coefficient matrix of the vectofs-1)"+**» X (p; k, 1) expressed in terms
of the vectord p; k, I) coincides with the matrid (,/p; 11, . .., t.) defined in lemma 3, with
t; corresponding to the non-zergs. Thus the determinant of this matrix is

n dn/2
(p - Zm,) . (90)
i=1

In other words, ify_"_, m; # p, then the coefficient matrix is non-singular, and dfevectors
X (p; k, 1) with k +1 = m form a basis foﬁp(km). When) "  m; = p, it follows from

lemma 3(b) that the span of tldg vectorsX (p; k, 1) with £ +1 = m is a subspace d}’,,(km)

of dimensiord,, /2.

7. The simple moduleV,

Denote byM, the maximalG = ¢(n + 1) submodule oW, (different fromV, itself). Then

the quotient module/, = VP/M,, is an irreducible (or simplejy(n + 1) module. In this
section we shall show that, is finite dimensional, and give its weight structure, character,
and dimension. By definitiorl/, and M, are weight modules, and

ve M, & v & U(G)v. (92)

For the weight vector$p; k, 1) or X (p; k, 1) it will be useful to refer to the quantity
Y (ki +1;) =Y, m; as thelevelof the vector (or of the corresponding weight).

Proposition 4. The weight vectors of V,, satisfy the following:

(a) if the level ofv is greater thanp thenv € M,;

(b) ifthe level obv is less tharp thenv ¢ M,,, and denoting the vectors of the quotient module
by their representatives i, we can writev € V,;

(c) if the level ofv is equal to p, consider its weightr,, = (0, mq,...,m,). With
d, = dim(Vp(Am)), we have thatimM,(%,,) = dim(V,(A,)) = d./2. Moreover,
the vectorsX (p; k, 1) of levelp with k; +I; = m; spanM,(%,,).

Proof. Consider a fixed weight,,, and the corresponding weight vectdys k, I) and
X(p; k,1). If the level of A, is less thanp, then the vectorsX(p; k, 1) form a basis for
V,(An) (see the end of section 6). By (75) and (76),

GO ) ()" X (pi k. 1)
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is equal to a non-zero constant timgs Thusvg € U (G) X (p; k, 1); in other words, all vectors
of weightx,, are notinM,,.

Letthe level ofv be greater thap. Applyingb; or f;” reduces the level by one. However,
for the vectors at levep + 1 it follows from (71) and (72) that the action bf or f; yields
only vectors of the fornX (p; k, 1) at levelp, and all these vectors themselves are annihilated
by b; andfjf. Thus one deduces tha cannot belong t&/ (G)v if v has level greater tham

Finally, consider a weight,, = (0, m, ..., m,) of level p. The vectorsX (p; k, 1) with
ki +1; = m; are all annihilated by; and f~, so it follows that they belong t8/,,.. In this
case, we know (see the end of section 6) that these vectors span a subspace of dipgBasion
Thus dimM,(%,,) > d,,/2, and we still need to show that the dimensioff(x,,) does not
exceedi,,/2. The spacé7p(Am), of dimensiord,,, is spanned by thé, vectors|p; k, 1) with
k; +1; = m;. Assume thatr, # 0 (the same argument works for anothgr# 0). Consider
the sets

So={X(ps ke, I, ... . ky_1, ln_1,m,, O)k; +1; = m;} (92)
Sy={lp; ke, 1, ..., kn—1, ly—1, my — L, D]k +1; = m;} (93)
S =5US;. (94)

Clearly, #y = #S; = d, /2. The vectors inS; are obviously linearly independent. By
considering the coefficient matrix of the vectorsSgfin terms of thed,, vectors|p; k, 1), and
using lemma 3, it follows that the vectors §f are also linearly independent, and furthermore
that the vectors of are linearly independent. Thusconstitutes a basis fd?p(km). The
elements of5y all belong toM, (A,,). On the other hand, spés) contains no vectors that are
annihilated byP. Indeed, consider a linear combinatiomf the vectors inS;, and express
thatc is annihilated by;. Using (71), and the linear independence of the vectors appearing
in b, c, it follows thatb, ¢ = 0 only if all the coefficients in the linear combinatiorare zero.

One can now deduce that no linear combinatior§otan yield a vector oM, (A,,). This
shows that dind,(1,,) = dn /2, hence dinV,(A,,) = dy /2. O

It can be verified thad,, which is ag(n + 1) module, is generated by one vectolas a
¢ (n+1) module (in other words‘?p contains ong (n + 1) highest-weight singular vectar).
In our notation, this vectow is equal tow = X (p; p,0,...,0,0,...,0).

This proposition gives us the vectors af, explicitly. Hence it also gives the
(representatives of) the vectors &f = \7,,/M,,. In particular, v, is finite dimensional,
and the weight structure df, can be deduced. For aweighf = (p — >, m;, m1, ..., m,)

(with all m; > 0), letr be the number of non-zera;s. Then the multiplicity of,, is 2" if the
level of ,, is less tharp, and 2/2 = 21 if the level of1,, is equal top (and, of course, the
zero of the level is larger thap).

Once the weight structure is known, itis possible to write down the character and dimension
of V,. To do this, it will be useful to first determine the decompositiorVgfwith respect
to the subalgebrgi(n + 1) C G. SinceV, is finite dimensional, it will decompose into a
direct sum of simple finite-dimensiongl(n + 1) modules. This decomposition can be derived
from the weight structure. The highest weight(js O, . .., 0), with multiplicity one. So
thegl(n + 1) module with highest weightp, O, . . ., 0) is a component of the decomposition.
Subtracting the (known) weights of thig(n + 1) module from the set of weights df,,,
leaves(p — 1,1,0,...,0) as the next highest weight, also with multiplicity one. Then we
go on: first subtract all weights (including multiplicities) of tb&n + 1) module labelled by
(p —1,1,0,...,0); then determine the highest weight of the remaining ones, etc. Finally,
one obtains:
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Proposition 5. The decomposition of thg(n + 1) moduleV,, into g/(n + 1) modules (with
eachgl(n + 1) module characterized by its highest weight) is as follows:

V, > (p,0,...,.0®(p—-110,....08(p—-2,110,....08 -
®(p—-—n11...,1. (95)
The dimension o¥, is given by

dimv,,zzn:(pi_l><”:’:i>. (96)

i=0

Proof. The decomposition follows from the known weight structure determined in
proposition 4. From the known dimension formula (e.g. [34, section 4]) of siggle+ 1)
modules, equation (96) follows. O

The (formal) character of & moduleV is defined as usual:

chv =3 "dimV®)xg - x)" (97)
A

where dimV (1) is the multiplicity of a weights in V, andx; can be considered as formal
variables. The character &f, follows from (95), using the (known) charactersgifn + 1)
modules. For &l/(n + 1) module with highest weight, the character is equal to the Schur
functions, (xo, . .., x,,). In this case, the highest weights appearing in the decomposition are
of a special form; in fact, they are of Frobenius fo¢m— 1 — i|i) [33, p 3]. Since in such a
case the character is given by [33, p 47]

Salby = has1ep — harzep-1+ -+ (=1 hyuper (98)

wheree, (respectivelyh,) is therth elementary (respectively complete) symmetric function
in thex;, it follows that

ch V[, = hp_nen + hp_n_zen_g +.. (99)

ending withh , if n is even and withh ,_se; if n is odd.
To have the interpretation 6f, as a Fock space qf(n + 1), we still need to show that the
Hermitian form is positive definite.

Proposition 6. The Hermitian form orV,,, induced by (25), is positive definite.

Proof. Itis clear from (25) and (91) that the Hermitian form is zeroMp, so (25) indeed
induces a Hermitian form of, = V,,/M,. It also follows from (25) thatv|w) = O if the
weight ofv andw is different. So it is sufficient to study the behaviour of the Hermitian form
on a weight spac®),(1,,) only. Letx,, be fixed, and assume that the levehgfis less tharp

(3" m; < p)andthatalln; are non-zero (the proof has to be changed slightly in the remaining
cases, since according to propositib a different basis must be chosen; but in this different
basis, it leads essentially to the same computation). A basi4,far,) is given by the vectors

| p; k, 1) with k +1 = m. Thus we have to show that the matfikxwith matrix elements

Hy = (Ip; k1) | Ip; K, 1)) (100)
is positive definite. By (50)H, ; is equal to the coefficient af, in
SO B - (FDR B p; K1), (101)

The idea is now as follows:
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e The coefficient matrix of the vectors-1)"**» X (p; k, 1) expressed in terms of the
vectors|p; k, 1) is given byA = A(/p; m1, ..., m,). Thus the coefficient matrix of the
vectors|p; k, 1) expressed in terms ¢f-1)2** X (p; k, 1) is given byA~?.

e Theaction of £, (b)) - - (f7)(by)™ on avector of the forng—21)4** X (p; k', ')
is diagonal, and determined by (75) and (76).

This leads to
Hyp =dk,)(A™Yy, (102)
where

dik,) = kalka! -kl (p = D(p =2+ (p = D my).

It follows that H = ¢D~*A~T, with ¢ a positive constantd 7 the transpose i~ andD a
diagonal matrix with element®;; = m’l1 ---m!. However,H (being symmetric) is positive
definite if and only ifDY/?2H D%? is positive definite (e.g. by the Cholesky decomposition).
Now DY2H DY? = ¢ D~Y2A~T DY/ this last matrix is positive definite if all its eigenvalues
are positive. From the proof of lemma 3(b) (aad* determined by lemma 3(c)),

detD~Y?A"TDY? _xI) = ((ﬁ - x)z - Zm,)

i

so the eigenvalues ake= ./p & />, m;, which are indeed positive singe, m; < p. 0O

8. Conclusion

We have given a description of the Lie superalgepya+ 1) in terms of creation operators
bf, f and annihilation operatods, f,~ (i = 1,...,n). The quadratic relations (9) and
the triple supercommutation relations (10) and (11) determine the Lie superatgébral)
completely. The operatorb;t satisfy the relations ofi-statistics, and the operatofﬁt the
relations ofA-superstatistics. The combined relations (9)—(11) can be seen as a unification of
A-statistics andi-superstatistics.

We have shown thaj(n + 1) has an interesting class of irreducible representatigns
defined as a quotient module of an induced modf{;le For p a positive integer, these
representation¥), are finite dimensional, with a unique highest weight (of multiplicity one).
The Hermitian form that is consistent with the natural adjoint operatian(er 1) is shown to
be positive definite oi¥,. Forg(2) these representations are ‘dispin’, since they decompose
into the sum of two irreducible!(2) representation in the decompositig(®) > gl(2). Also
in the general case, the decompositiof¥pivith respect te(n+1) O gl(n+1) is determined,
through the weight structure &f,. Thus a character and dimension formula¥grare given.
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